顯示具有 影像分析 標籤的文章。 顯示所有文章
顯示具有 影像分析 標籤的文章。 顯示所有文章

7/26/2017

聊天機器人 - 快速製作在LINE上的人臉辨識應用

名人以及圖片分析 在和LINE聊天機器人之對話中


 聊天機器人(chatbot)作為人機介面,提供人類各種整合性服務是最容易產生的應用。而人臉辨識,一直都是人工智慧與數據分析的整合課題。因此,把LINE聊天機器人加上照片或人臉辨識的功能,似乎也很有趣。
用LINE QR 加小姍為好友 可以測試人臉辨識

以前,在做關於影像的實驗性質的程式時,通常會先考慮opencv。雖然opencv確實是個好工具,但是如果你的目標不是改善演算法,或甚至做出更先進的人臉辨識方式,那麼opencv會過於複雜。

在2016年底,AWS發表另一個雲端服務:Rekognition。這個服務提供了API用以辨識影像,並順便提供了幾個在應用上的api:「比較人臉」「辨別名人」「識別限制級圖案」。(文件請參考這裡)

這些api要運用的最簡單方式之一,就是使用AWS Lambda來驅動AWS內自己的API,再透過API Gateway跟外界 - 也就是chatbot整合。換言之,這仍然符合公有雲廠商(無論是AWS, google還是azure)的所謂serverless的未來方向。雖然這些公有雲廠商,其實只是為了讓客戶更難離開公有雲環境,但不可否認的是,這些api的確有用而且在初期成本也不高。

快速製作在LINE上的人臉辨識,需要幾個步驟:


(1) 對serverless的設計概念有些瞭解


請參考這裡這裡


(2) 對Line聊天機器人申請和製作,以及對AWS Lambda先有基本的瞭解。


可參考這裡這裡


(3) 在LINE webhook的event中處理image id。


在webhook的lambda程式中,特別挑出image的id。LINE的訊息傳遞給chatbot時,有分不同的type,要處理的是image type。LINE並不會真的傳圖片檔案到webhook中,他傳遞的是圖片id,透過這個id,可以用一個URL拿到圖片:


https://api.line.me/v2/bot/message/<id>/content

要取得這個圖片,當然要有Line token


(4) 讀取圖片URL並且以取得bytes


以python為例,首先以requests讀取URL,記得stream必須設為True,因為接下來需要將資料(影像的byte)直接讀取成bytearray。參考程式如下


    imageUrl = 'https://api.line.me/v2/bot/message/{}/content'.format(imageId)
    r = requests.get(imageUrl, headers=headers, stream=True)
    bArray = None
    with r.raw as data:
        f = data.read()

        bArray = bytearray(f)


(5) 使用各種AWS的Rekognition服務。

取得bytearray之後,剩下的事情就很簡單了。
以python為例,可以使用boto3 (最好是1.4.4版本)。先取得rekognition的client物件,直接使用裡面的方法(例如以下範例)。將Image參數都設定成{ 'Bytes': your_byte_array} 就可以取得分析的結果。


    rclient = boto3.client('rekognition')
    response = rclient.recognize_celebrities(
        Image = { 'Bytes':bArray }
    )

要注意的是,分析結果response是一個含有各種標籤與技術數值(例如信心程度)的dictionary物件,所有的標籤都還是英文,必須得自己轉換成中文才行。

範例中的「名人辨識」(celebrities)所查到的名字都是英文。可以利用wiki 英文api搜尋這個英文字,找到對應的中文網頁,在取得中文字。

wiki的英文api可參考這裡

(6) 存取S3之考量


如果看過AWS document應該會發現,使用recognize都可以設定image來源是S3。那麼範例為何不存取S3? 

事實上,的確可以將LINE的影像,先存在S3,然後再進行分析。然而,這樣會多了「存入」S3和取出S3的時間。並且,S3也是要收費的!影像如果只「分析一次」,那麼存在S3其實很不划算,存在Rekognition裡面更是貴。如果會反覆利用,那麼恐怕還是得存在S3中。



目前結果分享


用LINE將小姍加入好友,就可以試用一下目前LINE與AWS人臉辨識整合。


加小姍為好友 ID-> @opn2514f

加小姍為好友 Add Friend


下圖是辨識川普不同的表情,會被辨識出不同的年紀,和不同的心情。