9/13/2016

數據分析從零開始 - (2)資料取得和前處理




既然要分析資料數據,自然要有資料數據才能分析。資料取得是必要的事情。

資料來源有很多種,取得並且事後處理的難易度各有不同。

但可以確定的是基本情況是:

1. 資料的時間,會遠超過自己的想像

2. 在開始進行分析之前,資料整理的所花的時間精力,也會遠超過自己的想像

3. 資料整理,幾乎不可避免

4. 資料整理,沒有捷徑也沒有神奇的密技,只能靠不懈怠的努力耐心以及經驗

5. 實際上有創意,有價值的數據分析,都不能免除資料取得和整理。 



第一手資料:


在「嚴格的一手資料」定義下,做資料分析的人真的拿到一手資料的機會極端的少。不過如果你是購物網站的大老闆,則購物網站上產生的營運資料,web server的log等等,對你而言就是第一手資料。

實務上最常看到的第一手資料,應該就是網頁存取日誌(web log)。在2016年網頁伺服器市場上,apache加上nginx仍然佔了半數以上,其他的網頁伺服器種類雖然也不罕見,但網頁的log格式反倒似乎都很統一,因此,以網頁存取來說,資料取得跟分析都已經存在既有的工具。剩下就看規模和個人技巧。

其他類型第一手資料就包山包海,以業務來說,發票檔案(invioce)當然是貨真價值的第一手資料。以軟體開發來說,git上所有的commit log也是第一手資料。

以現在軟硬體的成本之低,第一手資料原則上都可以盡量保持「原來的樣子」,頂多保存的時候壓縮而已,不太需要進行破壞性過濾處理。

要點一:使用shell 做基本的確認以及雜訊處理。


mac或linux可以用的基本文字處理的技術太多。伺服器的log最基本的處理方式,應該先用shell快速瞭解一下現況。

舉例來說:

以下指令可以把access.log中的第11欄,http response code列出來,並且簡單統計一下各return code的次數。


#cat access.log | awk '{print $11}' | sort | uniq -c
以上圖來說,結果就是有3個http return 400,有134個return 200,沒有任何500的回傳值。至於什麼是http return code,請參考w3規範

要點二:用excel做最基本統計檢視


過去許多excel版本都有筆數的限制(最多六萬五千多筆),2013之後就放寬很多(大約一百萬筆),請參考官方網站

即便有數量的上限,也非常值得資料中,先擷取樣本來試著分析。使用樞紐分析表,可以很快看到資料欄位彼此可能的關係,在未來進行分析時候是很有用的參考。

如果到現在你還不知道什麼是pivot-table(樞紐分析表),那表示你根本不懂excel。  怎麼使用樞紐分析,請參考官方網站的說明。下一篇,我們會用政府公開資料簡單做個樞紐分析表。


要點三:以自動化的方式產生濃縮的摘要(二手資料)


只要能取得第一手資料,盡量使用自動化方式,自動產生有意義的濃縮摘要,這個摘要就算是二手資料。

當然,這要配合要點一的shell文字處理,例如以下指令:


#cat access.log | grep "GET /login" | awk '{print $6}' | cut -d ":" -f 1 | sort | uniq -c

這可以產生簡要報告,說明登入(login)頁面每天有多少人次來使用,執行結果如下圖:

這圖上的執行結果顯示,9/12有15個人次,而9/13有2個人次。


現存二手資料的資料


所謂二手資料當然就是不是直接產生資料的來源的資料。資料分析採用二手資料的機會非常高。

所有組織外部取得的資料,絕大部分都算是二手資料。因此在下一節中會特別說明外部資料的取得處理。

要點一:取得過程的紀錄,以及基本分析


無論資料是自己拿或者這別人給,都需要紀錄取得的過程。

舉例來說,如果IT「自動」會給你一份,wifi的使用者登入時間,以及最後封包產生時間,你就需要有方式「自動」記錄這個過程。

如果是外部網站,也應該要記錄當時取得的方式,假設是curl取得,則用了哪些參數,執行多少時間等等。

基本分析則和前一節相同,先用shell和excel對資料有基本理解。

要點二:正確性判斷


二手資料很可能不正確,或者,對資料的解釋不正確,會大幅影響資料的使用方式。

資料解釋不正確:舉例來說,只要有用過就知道,政府公開資料很多都宣稱編碼是utf-8,但實際根本就是Big5(例如 房地產實價登陸)。

資料不正確:二手資料取得的資料本身判斷正不正確很困難,特別是在大規模的資料收集下,很難簡單判斷正確與否。而且有些資料的正確性,可能連第一手資料來源都不能保證(例如天氣觀測)

但是可以透過「多面向」的方式來探究單一資料的正確性。簡單的說就是多找幾種資料來交叉比對。舉例來說,如果你的天氣資料來自不同的網站,如下兩個圖:



雖然這兩個圖在同一個時間點的氣溫還是差了兩度,不過起碼是一個合理的範圍,因此大致還能知道資料是合理。

要點三:自動化進行轉換格式以及二次儲存


二手資料無論是什麼格式,幾乎都會被轉移格式,或者合併,或者改換儲存媒介。例如csv檔案,常常就被改為json格式並且存進nosql中。

但重點是要「自動化」進行。雖然格式轉換或者改變儲存的形式,幾乎都有現成的工具可供匯入匯出,但是只要太多「人為手動操作」,都會讓資料處理越來越花時間,越來越難保證整個流程的品質。


外部取得資料



沒有留言:

張貼留言